
Partial Solution Set, Leon §6.5
***************************************************************************

6.5.1 We are to show first of all that A and AT have the same nonzero singular values, then
to describe the relationship between the singular value decompositions of A and AT . So
begin by assuming that σ is a nonzero singular value for A. By definition of singular
value, we know that λ = σ2 is a positive eigenvalue of AT A. Let x be an eigenvector for
AT A belonging to λ. Then AT Ax = λx. So

λ(Ax) = A(λx)

= A(AT Ax)

= AAT (Ax),

so Ax is an eigenvector for AAT , also belonging to λ. Conversely, suppose that σ is
a nonzero singular value for AT . Then λ = σ2 is a positive eigenvalue for AAT , with
eigenvector x, i.e., AATx = λx. Then

λ(ATx) = AT (λx)

= AT (AAT x)

= AT A(AT x),

so ATx is an eigenvector for AT A, also belonging to λ. Thus AAT and AT A have the
same positive eigenvalues, hence the same nonzero singular values. ✷

How, then, are the singular value decompositions for A and AT related? This is more
easily answered: if A = UΣV T , then AT = (UΣV T )T = VΣT UT .

6.5.2 We are to find the singular value decompositions of several matrices, using the method
outlined in the text. Here are two of the solutions.

(a) A =

[
1 1
2 2

]
. We begin by finding AT A =

[
5 5
5 5

]
. The eigenvalues are λ1 = 10

and λ2 = 0. So σ1 =
√
10, and σ2 = 0, and we have Σ =

[ √
10 0
0 0

]
. We know that

V is a diagonalizing matrix for AT A, and that we want the first column of V to be
a unit eigenvector for λ1. We choose v1 = (1/

√
2, 1/

√
2)T . The second eigenvector

must belong to λ2; we choose v2 = (1/
√
2,−1/√2)T . So V =

[
1/
√
2 1/

√
2

1/
√
2 −1/√2

]
.

Now we must find U . The first column of U is obtained from the equation

u1 =
1

σ1
Av1 =

1√
10

[
1 1
2 2

] [
1/
√
2

1/
√
2

]
=

[
1/
√
5

2/
√
5

]
.



For the second column of U , we find a unit vector from N(AT ); we take

u2 = (2/
√
5,−1/√5)T . The singular value decomposition of A is therefore

A = UΣV T =

[
1/
√
5 2/

√
5

2/
√
5 −1/√5

] [ √
10 0
0 0

] [
1/
√
2 1/

√
2

1/
√
2 −1/√2

]
.

(c) We have A =



1 3
3 1
0 0
0 0


 . Proceding as in the previous problem, we first find AT A =

[
10 6
6 10

]
. The eigenvalues of AT A are λ1 = 16 and λ2 = 4, with associated eigen-

vectors v1 = (1/
√
2, 1/

√
2)T and v2 = (1/

√
2,−1/√2)T . The singular values are

σ1 = 4, and σ2 = 2, and Σ =



4 0
0 2
0 0
0 0


 . We find u1 =

1
4
Av1 = (1/

√
2, 1/

√
2, 0, 0)T ,

and u2 =
1
2
Av2 = (−1/√2, 1/

√
2, 0, 0)T . It remains to find a pair of orthogonal unit

vectors from N(AT ); u3 = (0, 0, 1, 0)T and u4 = (0, 0, 0, 1)T will do nicely. Finally,
we have

A = UΣV T =



1/
√
2 −1/√2 0 0

1/
√
2 1/

√
2 0 0

0 0 1 0
0 0 0 1






4 0
0 2
0 0
0 0




[
1/
√
2 1/

√
2

1/
√
2 −1/√2

]
.

Note that we can also obtain a more compact factorization of A by discarding
columns three of U and rows three and four of Σ, obtaining a more compact factor-
ization A = U1Σ1V

T .

6.5.3 For the matrices in problem 6.5.2 whose SVDs were found above, the first has rank 1,

while the second has rank 2. Since A =

[
1 1
2 2

]
already has rank one, it is its own best

rank-one approximation (and a very good approximation it is). The closest rank-one

approximation to B =



1 3
3 1
0 0
0 0


 is obtained by replacing its least singular value σ2 = 2

with 0; the resulting factorization give us B̂ =



2 2
2 2
0 0
0 0


.
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6.5.4 We have A =



−2 8 20
14 19 10
2 −2 1


, with singular value decomposition

A =



3/5 −4/5 0
4/5 3/5 0
0 0 1






30 0 0
0 15 0
0 0 3






1/3 2/3 2/3
2/3 1/3 −2/3
2/3 −2/3 1/3


 .

The closest rank-two matrix to A is B =


 −2 8 20

14 19 10
0 0 0


, and the closest rank-one

matrix to A is C =



6 12 12
8 16 16
0 0 0


.

6.5.5 The matrix A =



2 5 4
6 3 0
6 3 0
2 5 4


 has singular value decomposition

A = UΣV T =




1
2

1
2

1
2

1
2

1
2

−1
2

−1
2

1
2

1
2

−1
2

1
2

−1
2

1
2

1
2

−1
2

−1
2






12 0 0
0 6 0
0 0 0
0 0 0







2
3

2
3

1
3

−2
3

1
3

2
3

1
3

−2
3

2
3


 .

(a) Use the singular value decomposition to find orthonormal bases for R(AT ) and
N(A).

Solution: By inspecting Σ, we see that rank(A) = 2. It follows that the first
two columns of V (rows of V T ) are an orthonormal basis for R(AT ), while the last
column of V is an orthonormal basis for N(A).

(b) As above, but for R(A) and N(AT ).

Solution: The first two columns of U are an orthonormal basis for R(A), and the
third and fourth columns are an orthonormal basis for N(AT ).

6.5.9 Let A be a matrix of rank n with SVD UΣV T . Let Σ+ n × m matrix shown:

Σ+ =




1

σ1
1

σ2
0

. . .
1

σn




.
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Define A+ by A+ = VΣ+UT . Show that x̂ = A+b satisfies the normal equations AT Ax =
ATb.

Proof: Let b ∈ Rm, and let A, A+, and x̂ be as described. Then

AT Ax̂ = AAT AA+b

= VΣT UT UΣV T V Σ+UT b

= VΣT UT UΣΣ+UT b (Since V T V = I)

= VΣT UT UUT b (Since ΣΣ+ = I)

= VΣT UTb (Since UT UUT = UT )

= ATb,

and we’re done. ✷
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